martes, 23 de septiembre de 2008

Imánes para capturar células cancerígenas

Unas nanopartículas magnéticas recubiertas con una molécula dirigida especializada han sido capaces de reconocer células cancerosas en ratones y expulsarlas del cuerpo.
Los resultados se describen en un estudio publicado en línea este mes en la revista Journal of the American Chemical Society. Los autores del estudio, investigadores del Instituto Tecnológico de Georgia (Georgia Tech), esperan que esta técnica proporcione, algún día, un modo de detectar (y, posiblemente, incluso tratar) el cáncer de ovario metastásico.
En el caso del cáncer de ovario, la metástasis se produce cuando las células abandonan el tumor principal y flotan libremente en la cavidad abdominal. Si los investigadores pudieran utilizar las nanopartículas magnéticas para atrapar estas células cancerosas a la deriva y extraerlas del fluido abdominal, podrían predecir e incluso evitar la metástasis.
Aunque las nanopartículas se han probado en el interior del cuerpo de ratones, los autores prevén un dispositivo externo que extraiga el fluido abdominal del paciente, filtre magnéticamente las células cancerosas y, a continuación, devuelva el fluido al cuerpo.
Tras la operación quirúrgica para extraer el tumor primario, el paciente se sometería al tratamiento para eliminar cualquier célula cancerosa que haya quedado.
Los investigadores ya están desarrollando un filtro como este y probándolo en el fluido abdominal de pacientes humanos con cáncer."Es posible que no sea necesario introducir las partículas en el cuerpo del paciente", señala John McDonald, funcionario científico principal del Ovarian Cancer Institute de Georgia Tech y autor del trabajo. "Sería preferible, porque así no hay que preocuparse de una posible toxicidad".Para probar la nueva tecnología, los investigadores inyectaron primero células cancerosas y, a continuación, las nanopartículas magnéticas en la cavidad abdominal de los ratones.
Las células cancerosas se señalaron con un marcador fluorescente de color verde y las nanopartículas con uno de color rojo. Cuando el equipo acercó un imán a la barriga de cada ratón, apareció un área concentrada de brillo verde y rojo bajo la piel, indicando que las nanopartículas habían atrapado las células cancerosas y las habían arrastrado hacia el imán. Este experimento muestra que las nanopartículas pueden atrapar al menos algunas células cancerosas en el interior cuerpo, sin embargo, todavía no está claro qué proporción exactamente pueden captar y extraer. Está prevista la realización de pruebas para comprobar con exactitud dicha proporción.

Fuente: Technology Review

Si quieres mas articulos como este Suscribete a mi blog por Email.... Es Gratis!

lunes, 8 de septiembre de 2008

Neurologia y Nanotecnologia

Un equipo de científicos del MIT y de las universidades de Nueva York y Tokio ha demostrado cómo se podría entrar en el cráneo y llegar al cerebro a través de la conexión de una red de nanocables de polímero a vasos sanguíneos en el cuello.

Hoy en día los métodos quirúrgicos modernos para implantar aparatos electrónicos que sirvan para estimular el corazón y corregir ritmos cardíacos anormales se han convertido en rutina. Pero llegar al cerebro de la misma manera, sin destrozar las neuronas en el proceso, plantea mucha más dificultad.

Aunque últimas técnicas permiten la instalación de electrodos en el cerebro para restaurar sentidos como la vista o el oído, frenar los temblores de la enfermedad de Parksinson, el método utilizado, es decir romper el cráneo, daña tejidos cerebrales sanos, crea un riesgo de infección y deja cables que sobresalen de su cabeza. Y a lo largo del tiempo, se desarrolla tejidos de cicatriz alrededor de los electrodos, aislándoles del tejido cerebral activo.

Pero a través de un trabajo de investigación publicado en The Journal of Nanoparticle Research, el citado equipo de científicos proponen un nuevo procedimiento para llegar al cerebro sin tocar el cráneo. Se trata de un método para conectar los electrodos a pequeñas agrupaciones de células cerebrales (o incluso neuronas individuales), utilizando el sistema cardiovascular como el conducto por el que se hilan los nanocables.

Los investigadores estiman que dentro de aproximadamente una década, será posible insertar un catéter en una gran arteria y dirigirlo por el sistema circulatorio hasta el cerebro. Una vez llegue a su destino, un conjunto de nanocables se extenderían en un “ramo” con millones de diminutas sondas que podrían utilizar los 25.000 metros de capilares del cerebro como una vía para llegar a destinos específicos dentro del cerebro.

En sus experimentos los científicos maniobraron nanocables de platino a través de los vasos sanguíneos en muestras de tejido humano y detectaron la actividad eléctrica de las células cerebrales activas colocadas al lado del tejido. Paralelamente crearon programas y soportes informáticos que podrían funcionar como un tipo de conversión de analógico a digital, convirtiendo señales emitidas por el cerebro en señales digitales y viceversa.

Desde entonces, los investigadores centran sus esfuerzos en cómo crear un conector suficientemente pequeño en una punta para llegar a cualquier neurona sin obstruir el flujo sanguíneo, pero suficientemente grande en la otra punta para conectar con instrumentos con el fin de grabar o enviar pulsos eléctricos. La solución que han encontrado el equipo ha sido sustituir los nanocables de platino por nanocables de polímeros, que además de ser mucho más baratos, pueden ser convertidos en cables mucho más finos y flexibles.

Actualmente los científicos investigan un proceso que permita la fabricación de nanocables de polímero que miden tan solo 100 nm. Creen que un nanocable de este tipo podría ser “dirigible” y que se le podría guiar por uno de los vasos sanguíneos menores que salen de los más grandes. Otra ventaja de este tipo de cables de polímero es que son biodegradables así que podrían ser utilizados para estudios cortos o diagnósticos, porque luego se decompondrían.


Si quieres mas articulos como este Suscribete a mi blog por Email.... Es Gratis!

domingo, 7 de septiembre de 2008

Nanotecnología e Insuficiencia Renal

Un equipo de científicos ha utilizado nanotecnología para desarrollar un filtro de nefronas para humanos (HNF) que podría hacer posible la fabricación de riñones artificiales para su implantación en personas con insuficiencia renal sustituyendo terapias convencionales como la implantación de riñones de donantes así como los métodos de diálisis convencionales.

El filtro HNF sería la primera aplicación hacia el eventual desarrollo de una nueva terapia de implantación renal para pacientes en la última fase de insuficiencia renal crónica.

El filtro HNF utiliza un sistema único creado mediante nanotecnología aplicada. En el aparato ideal para terapia de reemplazo renal (RRT), esta tecnología se usaría para copiar el funcionamiento de riñones naturales, operando sin parar y de acuerdo con las necesidades particulares de cada paciente. Funcionando 12 horas diarias 7 días de la semana, la tasa de filtración del filtro HNF es dos veces la de hemodiálisis convencional que se administra tres veces a la semana.

Según los investigadores, el sistema HNF, al eliminar el dialisate y utilizar un sistema de membrana innovador, supone un gran avance en el campo de terapias de reemplazo de riñón basadas en el funcionamiento de riñones nativos. La mejor tasa de eliminación además del diseño funcional que permite insertarlo sin problemas debería contribuir a una mejora en la calidad de la vida de pacientes con insuficiencia renal crónica.

Los científicos pretenden iniciar las primeras pruebas con animales para luego pasar a la organización de pruebas clínicas.

Si quieres mas articulos como este Suscribete a mi blog por Email.... Es Gratis!

miércoles, 3 de septiembre de 2008

Regeneración de cartílago

Una superficie texturizada con nanotubos de carbono podría potenciar el desarrollo celular. Thomas Webster, un bioingeniero de la Universidad de Brown, ha estado desarrollando materiales implantables con texturas a nanoescala que imitan la aspereza de los tejidos vivos.

Ahora, su equipo ha descubierto que los condrocitos se pueden adherir a una superficie cubierta por nanotubos de carbono y desarrollarse más, especialmente si están expuestos además a una estimulación eléctrica. Webster cree que las superficies con nanotubos de carbono, que no solo están texturizados sino que además son conductores de la electricidad, podrían constituir una estrategia prometedora para el diseño de implantes de cartílago.

El cartílago tiene una capacidad limitada para autocurarse, por lo que la pérdida o daño del tejido de protección es un problema importante para la salud. Muchos laboratorios de investigación han desarrollado materiales que imitan las propiedades del cartílago, así como estructuras en las que se pueden sembrar condrocitos fuera del cuerpo para ser posteriormente implantadas en el sitio en el que se ha producido la perdida del cartílago. Pero uno de los problemas es conseguir que un cartílago natural del paciente, un material esponjoso y más bien inerte que carece de un suministro sanguíneo propio, se una e integre con el implante.

Para construir una superficie más compatible con las células, el equipo de Webster utilizó nanotubos de carbono, que tienen una superficie áspera y, además, conducen la electricidad. Los investigadores mezclaron los nanotubos en láminas de policarbonato-uretano, un polímero aprobado por la FDA. Cuando cultivaron los condrocitos sobre estas láminas, las células se desarrollaron más en la superficie áspera que en una suave de policarbonato. Las células se desarrollaron más rápido aún cuando se estimularon eléctricamente los nanotubos, aunque el motivo todavía no está claro. "La mayoría creen que se produce cambiando el potencial de membrana de las células", señala Webster, quien incrementaría el número de iones calcio (importante indicador celular) que fluyen hacia la célula.¿Por qué a las células les gustan las superficies ásperas? Webster cree que las nanoestructuras modifican las propiedades de superficie de un material, ayudándole a atraer las proteínas a las que se pegan las células.

Una empresa de reciente creación, llamada Nanovis se ha hecho con la licencia y espera realizar pronto ensayos con humanos. El equipo de Webster ha demostrado también que las células del tejido vascular se adhieren mejor a superficies nanotexturizadas, algo que se podría utilizar para diseñar mejores endoprótesis vasculares. Para ello, considera que se podrían incorporar nanotubos de carbono a los materiales utilizados en la fabricación de implantes de cartílago.


Si quieres mas articulos como este Suscribete a mi blog por Email.... Es Gratis!

martes, 26 de agosto de 2008

Nano-robots

Más lejos quedan, de momento, las máquinas moleculares de reparación que viajarán a través del torrente sanguíneo, con capacidad de actuar sobre el ADN (enfermedades genéticas), modificar proteínas o incluso destruir células completas, en el caso de tumores. Sin embargo, algunos expertos se han atrevido ya a adelantar cómo serán esos futuros nano-robots.

Es el caso de Robert Freitas, investigador del Instituto de Fabricación Molecular de California, que ha creado una especie de glóbulo rojo artificial bautizado como respirocito. Con una sola micra de diámetro, este robot esférico imita la acción de la hemoglobina natural que se encuentra en el interior de los hematíes, aunque con la capacidad de liberar hasta 236 veces más oxígeno por unidad de volumen que un glóbulo rojo natural. Los respirocitos incorporarán sensores químicos, así como sensores de presión. De esta forma estarán preparados para recibir señales acústicas del médico, que utilizará un aparato transmisor de ultrasonidos para darles órdenes con el fin de que modifiquen su comportamiento mientras están en el interior del cuerpo del paciente.
Freitas ha diseñado también los microbívoros, fagotitos mecánicos concebidos para destruir cualquier microbio de nuestro torrente sanguíneo. Utilizando un protocolo digestivo y de descargas actuarán, según estima su creador, hasta 1000 veces más rápido que las defensas naturales.

Si quieres mas articulos como este Suscribete a mi blog por Email.... Es Gratis!

jueves, 21 de agosto de 2008

NANOTECNOLOGIA CONTRA EL CANCER

Cápsulas por el torrente sanguineo.

El matrimonio entre medicina y nanotecnología se está convirtiendo en una pesadilla para el cáncer. El combate de la enfermedad a escala molecular permite detectar precozmente la enfermedad, identificar y atacar de forma más específica a las células cancerígenas. Por eso, el Instituto Nacional del Cáncer de Estados Unidos (NCI) ha puesto en marcha la "Alianza para la nanotecnologia en el cancer", un plan que incluye el desarrollo y creación de instrumentos en miniatura para la detección precoz.

En la administración de medicamentos, las nuevas técnicas son ya un hecho. "Los nanosistemas de liberación de fármacos actúan como transportadores de fármacos a través del organismo, aportando a estos una mayor estabilidad frente a la degradación, y facilitando su difusión a través de las barreras biológicas y, por lo tanto el acceso a las células diana", explica María José Alonso, investigadora de la Universidad de Santiago de Compostela, que trabaja en esta línea desde 1987. En el tratamiento del cáncer, asegura, "estos nanosistemas facilitan el acceso a las células tumorales y reducen la acumulación del fármaco en las células sanas y, por tanto, reducen los efectos tóxicos de los antitumorales".

Desde Estados Unidos, el nanotecnológo James Baker ha desarrollado otra alternativa basada en unas moléculas artificiales conocidas como dendrímeros. Se trata de estructuras tridimensionales ramificadas que pueden diseñarse a escala nanométrica con extraordinaria precisión.

Los dendrímeros cuentan con varios extremos libres, en los que se pueden acoplar y ser transportadas moléculas de distinta naturaleza, desde agentes terapéuticos hasta moléculas fluorescentes.

En su estudio, Baker aplicó una poderosa medicina contra el cáncer, metotrexato, a algunas ramas del dendrímero. En otras, incorporó agentes fluorescentes, así como ácido fólico o folato, una vitamina necesaria para el funcionamiento celular. "Es como un caballo de Troya. Las moléculas del folato en la nanopartícula se aferran a los receptores de las membranas celulares y éstas piensan que están recibiendo la vitamina. Al permitir que el folato traspase la membrana, la célula también recibe el fármaco que la envenena", señaló el investigador.


Si quieres mas articulos como este Suscribete a mi blog por Email.... Es Gratis!